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Extreme events such as intense tornadoes and huge floods, though infrequent, are
particularly important because of their disproportionate impact. Our ability to
forecast them is poor at present. Large events occur also in intermittent features of
turbulent flows. Some dynamical understanding of these features is possible because
the governing equations are known and can be solved with good accuracy on a
computer. Here, we study large-amplitude events of turbulent vorticity using results
from direct numerical simulations of isotropic turbulence in conjunction with the
vorticity evolution equation. We show that the advection is the dominant process by
which an observer fixed to the laboratory frame perceives vorticity evolution on a
short time scale and that the growth of squared vorticity during large excursions is
quadratic in time when normalized appropriately. This result is not inconsistent with
the multifractal description and is simpler for present purposes. Computational data
show that the peak in the viscous term of the vorticity equation can act as a precursor
for the upcoming peak of vorticity, forming a reasonable basis for forecasts on short
time scales that can be estimated simply. This idea can be applied to other intermittent
quantities and, possibly, more broadly to forecasting other extreme quantities, e.g. in
seismology.

1. Introduction
Huge floods, intense tornadoes and hurricanes, large earthquakes, big crashes in

stock-market value and a number of other extreme events have much larger impact
than might be reckoned by the relatively low frequency of their occurrence. Forecasting
such events is of obvious interest but of momentous challenge. By a forecast, we mean
here the advance knowledge that a certain large event will occur with high probability
within a known time scale following a suitable precursor. If successful predictions
are possible in one complex system, something useful may be learnt about others
as well.

Turbulence is replete with strong fluctuations in vorticity, dissipation and other
features characteristic of small-scale motion. Depending on the Reynolds number,
extreme fluctuations of dissipation and vorticity can be hundreds or thousands of times
the mean value (Sreenivasan & Meneveau 1988; Donzis, Yeung & Sreenivasan 2008).
It is technically important to understand these extremes because of their relevance to
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reacting flows (Sreenivasan 2004) and dispersion problems (Borgas & Yeung 2004);
they are also objects of intense mathematical inquiry (Gibbon & Doering 2005) and
the centre of attention in intermittency theories (Frisch 1995; Yakhot & Sreenivasan
2005). Our interest here is to explore empirically the extent to which extreme events
in turbulence can be predicted dynamically through a plausible precursor. Such
dynamical predictions are indeed difficult, but we have here the luxury of being able
to learn from the well-posed differential equations governing fluid motion. Though
the analytical understanding of the equations is modest, we expect to track their
behaviour well through ‘exact’ numerical solutions. This is the thrust of the paper.

The numerical database for our work comes from the exact or direct numerical
simulation (DNS) of isotropic turbulence. We have performed three such simulations
at Taylor microscale Reynolds numbers Rλ of 140, 240 and 400 to obtain all the
terms in the vorticity equation (Donzis et al. 2008). We use the data to study the
processes that dominate the time variation of vorticity at a fixed location, and we
identify precursors of extreme events in the vorticity trace. We find that advection
dominates the dynamics for short times and that the Eulerian growth of extreme
vorticity follows a universal power law with a single exponent when normalized
by the proper time scale. Perhaps against intuition, strong viscous activity typically
precedes intense vorticity, and the advance time is given by a suitable combination
of viscosity and large-scale velocity. In particular, the knowledge of the signs of the
advective and viscous terms, and of the vorticity itself, determines in advance the
occurrence of a local extremum in vorticity.

The rest of the paper is organized as follows. We first describe the numerical
simulations and the basic parameters that they employ. The dynamics of large
fluctuations of vorticity are studied in the next two sections through the evolution
equation. The time scales associated with large events are discussed, and precursors of
large fluctuations are presented. Finally, a summary and further outlook are offered.

2. Numerical method and simulation parameters
Our interest is in the time evolution of vorticity ωi , whose governing equation

∂ωi/∂t = −ujωi,j + ωjui,j + νωi,jj (2.1)

results from taking the curl of the Navier–Stokes equations for an incompressible
fluid. Here, ui represents the velocity component in the direction i and the summation
notation is implied; ν is the kinematic viscosity of the fluid. The equation is solved
using a massively parallel implementation of the pseudo-spectral method of Rogallo
(1981). Aliasing control is applied by a combination of truncation and phase-shifting
methods to compute all the terms in this equation, which implies double evaluations
for the first two terms on the right. This adds significant overhead to the computational
time. However, since large fluctuations occur on short time scales, statistics appear to
converge without demands of excessively long simulations. Further, one can obtain
a large number of samples by storing the data at many locations in physical space
at every time step: homogeneity assures that specific locations are unimportant for
statistics, as long as they are sufficiently distant from one another to be effectively
independent.

The initial conditions are taken from stationary forced isotropic turbulence at the
Reynolds numbers given in Table 1, and the resolution is such that the condition
kmaxη ≈ 1.5 holds (where kmax is the highest resolvable wavenumber and η is the
Kolmogorov scale representing, nominally, the smallest scale of dissipation). The
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Rλ 140 240 400
N 256 512 1024

TE,0/〈τη〉0 14.5 23.7 40.8

TE,0/〈τv〉0 459 1310 4244

〈τη〉0/〈τv〉0 32 55 104

Table 1. Basic parameters of the simulations: Taylor microscale Reynolds number Rλ, grid
resolution N and different time scale ratios at the beginning of the simulation (denoted by
the subscript 0). Here, TE,0 ≡ L/u′

0 is the eddy turnover time, with L being the large scale of

turbulence and u′
0 the root-mean-square (r.m.s.) velocity; 〈τη〉0 = (ν/〈ε〉0)

1/2 is the Kolmogorov

time scale; and 〈τv〉0 = ν/u′2
0 is a characteristic time scale of extreme events (see the text).

Further, 〈.〉 indicates space average.

simulations were continued without forcing. Since the simulation time was short, the
final value of turbulent kinetic energy was always greater than half its initial value,
and the variation of the smallest time scale τη was less than 40 %.

The time step size was controlled by a constant Courant number of about 0.3
which is smaller than in common practice (Eswaran & Pope 1988). This resulted in a
time step that is two orders of magnitude smaller than the mean Kolmogorov time
scale. Indeed, faithful capture of the strongest events requires such a fine resolution.

3. Dynamics and statistics of large fluctuations
3.1. Power-law behaviour

To discuss the dynamics of large excursions in vorticity ωi , it is convenient to rewrite
(2.1) schematically as

∂ωi/∂t = −Ci + Wi + Vi , (3.1)

where

Ci = ujωi,j , Wi = ωjui,j and Vi = νωi,jj , (3.2)

representing the advective, vortex-stretching and viscous contributions, respectively.
In figure 1 we show typical time series, for ω1, of all the terms in (3.1). The figure
shows that the advective term Ci accounts for much of the variation of ωi , especially
when the vorticity amplitudes are large. The Eulerian picture is that large excursions
of vorticity, perhaps related to vortical structures, are advected by the local flow
past the measuring location. This observation, which is consistent with the qualitative
suggestions in Zeff et al. (2003) and Lee & Lee (2005), would imply that

∂ωi/∂t ≈ −Ci (3.3)

can approximate the dynamics of large fluctuations of vorticity. Vortex stretching,
which is the main mechanism for generating vorticity, makes a secondary contribution
to the instantaneous balance of large fluctuations observed in figure 1. The physical
picture is that large vorticity is generated on a longer time scale dictated mostly by
vortex stretching and that once created, it is advected by the flow on shorter time
scales. Let us denote the instantaneous advection velocity by v. Since viscous effects
eventually prevent large spatial gradients from forming, it is natural to think that
both ν and v are the two key variables for scaling the dynamics of large fluctuations.

Let us choose a vorticity spike such as that highlighted in figure 1. Since Ci

dominates the right-hand side of (3.1), ωi will have an inflection point at time t ′
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Figure 1. Typical time series for the vorticity budget in (3.1) at an arbitrary spatial location
for Rλ ≈ 240. All quantities are normalized by the r.m.s. value of ω1 at t = 0 and by the initial
eddy turnover time TE,0 =L/u′

0. Lines represent the data and symbols mark the lines for
visibility. The dashed lines denote ∂ω1/∂t; the upright triangles denote −C1; the stars denote
W1; and the inverted triangles denote V1.The circles represent ω1 multiplied by 10 for clarity.
The arrows indicate typical maxima in ω1 and V1.

where the advection term has a local maximum. One can expand the solution around
t ′ which, to first order, is ∂ωi/∂t ≈ c, where the constant c, the local maximum of
Ci , is written as 1/τ 2 for convenience. Integration yields ωi ≈ ω0

i + (t − t ′)/τ 2, where
ω0

i , the vorticity at t ′, is typically much smaller than the peak value. Therefore, one
expects

ω2
i ∼ (t − t ′)2/τ 4 (3.4)

during those intervals in which vorticity grows fast. The quality of this prediction is
shown in figure 2 for a typical intense event at Rλ ≈ 400. Equation (3.4) is seen to
represent the data quite well for more than an order of magnitude in the fluctuation
amplitude; this is so for all large peaks.

To test (3.4) further, we have obtained least squares fits of the expression

ω2
i = [α1(t − t ′)]α2 (3.5)

to intense events at different Reynolds numbers. The resulting α2 values are plotted in
figure 3 against the parameter θ =(νε)1/2/v2, with the overbar denoting the average
over the duration of the peak vorticity. To be specific, we have used the averaging
time to be the interval between the circles in figure 2, but plausible variants do not
affect the results significantly. The origin and interpretation of the parameter θ will
be discussed in a moment. The inset of figure 3 plots the same exponent α2 as a
function of the maximum value of vorticity attained in each intense event examined.
It appears that α2 = 2 holds essentially for fluctuations of all intensities (which span
almost three decades here; see the inset) and for all Rλ.

In the multifractal (MF) formalism, different magnitudes of squared vorticity have
different exponents (Sreenivasan & Meneveau 1988), but (3.4) and the data presented
here yield a unique exponent of 2 for all large magnitudes. The two views are, in
fact, consistent if we note that τ in (3.4) depends on the intensity of each peak and
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Figure 2. Detailed view of a typical intense event at Rλ ≈ 400. (a) Squared vorticity normalized
by its space average at the beginning of the simulation. The dotted line corresponds to 10ε/〈ε〉0
(where ε is the instantaneous energy dissipation rate; see § 3.2 for definition) at the same
location; the factor 10 has been used for clarity. (b) Squared vorticity on semi-log scale. (c)
Velocity components during the same time interval considered in (a) and (b). The relevance
of these data will be discussed in § 3.2. Times are normalized by the initial space-averaged
Kolmogorov time scale 〈τη〉0. The dashed lines in (a) and (b) correspond to best fits using
(3.4), and the circles delimit the fitting range.
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effectively hides the circumstance of variable exponents. A fuller discussion of this
point is given in the Appendix.

3.2. Time scales

Figure 3 also shows the similarity scaling of τ (which, through (3.4), is readily related
to α1 in (3.5)). To understand its nature, recall the earlier remark that ν and the
advection velocity v are two key parameters. It is reasonable to choose the average
velocity v, over the duration of the event, as the appropriate characteristic value, but
the precise choice is not critical: it is clear from figure 2 that even when the vorticity
varies by orders of magnitude, the velocity remains approximately constant (figure 2c).
This is consistent with the well-known fact that vorticity and velocity gradients vary on
shorter time scales than the velocity itself. We now note that c = −ujωi,j (see (3.3)) and
that εijkuiωk,j = ε/ν −2(uisij ),j , where εijk is the alternating tensor and ε is the energy
dissipation rate. The second relation shows that cross-terms involving components of
the velocity and vorticity gradients are kinematically related in part to instantaneous
dissipation. Moreover, it has been consistently found that intense enstrophy events are
‘preceded’ by intense dissipation events (Zeff et al. 2003; Lee & Lee 2005). Therefore,
in view of (3.3), it is reasonable to think that ε is also a key parameter in determining
the dynamics close to an intense vortical event. Unlike the velocity, the dissipation
over the duration of an intense vorticity episode varies substantially, as can be seen in
figure 2(a); so it is necessary to consider its average value ε. Two time scales, τv = ν/v2

and τη = (ν/ε)1/2, can then be formed from ν, v and ε. The ratio of these two time
scales is the non-dimensional parameter θ = (νε)1/2/v2. Dimensional analysis suggests
that

τ = τvf (θ), (3.6)

where f should be some universal function. This is the expectation explored in figure 3
over (almost) two orders of magnitude of θ .

The DNS results at different Reynolds numbers are included in figure 3 (open
symbols). Some scatter notwithstanding, the data in figure 3 support the scaling
suggested by (3.6) and can be fitted to the expression τ/τv ∼ θ−γθ with γθ ≈ 0.49. The
results do not change qualitatively if θ and τ are defined through other plausible
averaging times. Note that the magnitude of τv varies by an order of magnitude in our
study, as can be seen from Table 1, where its ‘global’ mean-square velocity u′2 is used
instead of v2. This substitution does not mask this order of magnitude statement.

Each intense event is slightly different from all others, since (3.3) is only an
approximation that depends on the relative weights of advection, vortex stretching and
dissipation; the levels of Wi and Vi would, in fact, be different in the neighbourhood
of different spikes, giving somewhat different values of the constant c. Nevertheless,
the DNS data follow the simple correlation with constant α2. In principle, it would
be possible to account for fluctuations of Wi and Vi as random variables on the
right-hand side of (3.3), which could lead to an additive noise to τ in (3.6). The
distribution of τ is related to the scatter in figure 3, which itself is related to how
vortex-stretching and viscous contributions are crudely eliminated from inclusion.
This effect, however, would weaken with increasing Reynolds numbers because the
intense events and advection effects would both become stronger.

We emphasize that the scaling ω2
i ∼ t2 is simply a first-order expansion around the

local maximum of ∂ωi/∂t . This general observation applies to any function. What
is particular to turbulence is that the time scale associated with this growth can
be related to a simple combination of parameters. This is mainly because a single



Short-term forecasts and scaling of intense events in turbulence 19

process dominates the right-hand side of (3.1). If, for instance, advection grows in
time negatively but viscous terms attain large values to balance advection, the proper
time scale for the growth of ωi will be more complex.

A further point is in order. From (3.6) it may appear that intense vorticity events
are completely determined by local conditions. One has to reconcile it with the global
organization observed in turbulent flows. Our derivations for the behaviour of ωi

contain the velocity u and the dissipation rate ε. In terms of vorticity, the velocity
field can be written as u(x) = −1/4π

∫
Λ

ω(x − r) × r/|r |3d3r , where Λ is the periodic
domain. This equation makes it clear that the velocity at a particular location contains
information from vorticity everywhere, especially from a neighbourhood of x (because
of the factor r/|r |3). A similar integral relation can be obtained for velocity gradients
and thus for ε (see, e.g. Constantin 1994). Therefore, (3.4) and (3.6) do not mean that
only local information is adequate to addressing the scaling of intense vortical events.

4. Precursors of large fluctuations
4.1. Precursors in viscous term

The results in the previous section show that large fluctuations are approximated
well by (3.3). Therefore, large values of Ci lead to large time derivatives which will
result in the t2 growth of squared vorticity. Of course, because of the integral relation
between Ci and ωi , there will be a time lag between a large value of advective
terms and a peak in ωi . This is clearly seen in figure 1 where peaks in ωi (the line
connecting the circles) appear later than the peaks in Ci (the line connecting the
upright triangles). Furthermore, large advective terms are preceded by local maxima
of viscous terms (the line connecting the inverted triangles in figure 1). This feature
can be understood if one writes the viscous term as Vi = ν(∂/∂xj )(∂ωi/∂xj ) and
replaces ∂/∂xj by (1/v)∂/∂t . This leads to Vi ≈ (ν/v)(∂/∂t)(∂ωi/∂xj ) which, to a first
approximation, can be written from definitions (3.2) as ∂ωi/∂xj ≈ Ci/v within the
short interval in which vorticity peaks, so that

∂Ci

∂t
≈ 1

τv

Vi . (4.1)

Equation (4.1) furthermore shows that τv is the natural time scale of the problem.
Indeed, if one assumes that Vi is represented by a single Fourier mode with frequency

� and amplitude V̂i , (3.3) and (4.1) suggest that Vi arrives at an observation point
earlier than ωi by the time interval of 2πτv/� . In other words, the time interval
Δt∗ between the local maxima for Vi and ωi (illustrated in figure 1 as the interval
between the arrows on the curves for ω1 and V1) is of the form

Δt∗ ∼ τv. (4.2)

We automate the search for scaling of (4.2) by first focusing attention on values
of ω2

1 greater than, say, 30 times the mean-square value for the time series obtained
at one spatial location. Then, for each such peak, a prior local maximum of Vi is
identified within an interval corresponding to a few mean values of τv . Experience
shows that the precise choice of this interval is not critical for the scaling to be
determined. This simple approach, however, does miss some spikes: in the chosen
interval, there may be more than one maximum for Vi or more than one ωi above the
specified threshold. The data presented here capture the conditions properly for about
75 % of the samples above the threshold. We measure the time Δt∗ between the local
maxima for Vi and ωi and empirically test (4.2) by also measuring τv independently.
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Figure 4. The time interval Δt∗ between the arrivals of a peak in viscous terms and the
subsequent peak in vorticity plotted against the time scale τv for Rλ ≈ 140 (circles), 240
(squares) and 400 (triangles). The dashed line denotes slope 1. The solid line denotes (4.3)
which is the best fit to the data. The inset denotes scaling of the ratio of local maxima for

vorticity ω̂1 and viscous terms V̂1.

To capture the dynamics over the interval between local maxima of Vi and ωi , it
is more convenient to average the velocity v over the time interval Δt∗; the results to
be discussed below are robust with respect to the use of this longer averaging time,
since as seen in figure 2, the velocity does not vary significantly over such intervals of
time. In figure 4 we see that the data for Rλ ≈ 140, 240 and 400 follow

Δt∗ ≈ 24τ 0.93
v , (4.3)

which is only slightly different from (4.2). The agreement in figure 4 is good
especially because this scaling is not of statistical nature but corresponds to individual
trajectories in phase space. It is the case, regrettably, that the present argument
lacks the connection to geometrical aspects of the vectors and tensors involved.
In particular, the model does not consider the effect of alignments between the
velocity vector u and the gradient ∇ω1 which make up the advective term (i.e.
C1 = u · ∇ω1 = |u||∇ω1| cos(u, ∇ω1)). These aspects can be taken into account at
the next level of refinement, presumably reducing the scatter in figure 4, but the
dimensionality of the problem will increase disproportionately. Finally, as stressed in
previous sections, (3.3) contains in reality some contribution from Vi and Wi , which
may be different for each intense event. In this sense, the scaling (4.3) can be regarded
as an approximate and average result.

To get some idea of the relation between the amplitude of ωi and Vi , we may

again resort to a single Fourier component for the viscous term with amplitude V̂i .

Equations (3.3) and (4.1) then imply ω̂1/V̂1 ∼ τv/�
2. Now, we use the previous result

Δt∗ ∼ τv/� to find that the amplitude ratio scales as ω̂1/V̂1 ∼ Δt∗2/τv . To compare
this prediction with the DNS results, the vorticity ‘amplitude’ is taken as the difference
between the maximum value and that at the time when Vi peaks; this difference
measures the actual growth. The results are shown in figure 4 (inset) where the data
follow the power-law trend, although the slope is smaller than the expected value of
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Rλ 140 240 400
NV̂i

190 198 155

P (ω̂i |V̂i) 0.71 0.71 0.72

P (sign(ω̂i) = sign(V̂i)|V̂i) 0.48 0.45 0.50

P (sign(ω̂i) = sign(V̂i)|V̂i , (+ + +/ − −−)) 1.00 1.00 1.00

P (sign(ω̂i) = sign(V̂i)|V̂i , (+ − +/ − +−)) 0.82 1.00 0.77

P (sign(ω̂i) = sign(V̂i)|V̂i , (+ + −/ − −+)) 0.88 0.78 0.80

P (sign(ω̂i) = sign(V̂i)|V̂i , (+ − −/ − ++)) 0.46 0.40 0.50

Table 2. Intense viscous event as a precursor for the subsequent large vorticity event. The
threshold for Vi is 〈ω2

1〉0. See the text for explanations of different quantities.

unity (0.53 from the best fit). This result and the greater scatter than in the main
frame in figure 4 are not unexpected because although τv is the natural time scale
for the problem, the dimensional scaling for the ratio of amplitudes relies on Vi

behaving as a single sinusoid.

4.2. Prediction results

The scaling of (4.3) shown in figure 4 was obtained by analysing time series backwards:
how far back in time with respect to an intense vorticity event does a local extremum
in Vi occur? We can now ask the more important question of forecast: using the
correlations just described, how long after observing a local maximum in the viscous
event does it take for intense vorticity to build up to its peak value? We first note
that large Ci will not always lead to large ωi . An example is seen in figure 1 at
t/TE,0 ≈ 0.326, where Ci attains a large value but ωi is negative for a long interval of
time. Thus, the large positive time derivative is not enough by itself to make ωi grow
to large positive values.

We now proceed to explain the last statement better and answer the question posed
above. This is not altogether a circuitous exercise because there are several operational
considerations in the prediction task than are involved in data correlation. First, we
find the local maximum (or minimum) in Vi if it is positive (or negative). Since we
are primarily interested in large fluctuations, we simultaneously set a threshold on

Vi . Let us denote a qualified maximum (or minimum) by V̂i and the time at which
it occurs by tV̂i

, and let the total number of such viscous events, both positive and
negative, observed for a given Reynolds number be NV̂i

. We now look for a local

extremum for ωi in an interval of time given by 2 × 24τ 0.93 (see (4.3)), where the
prefactor 2 roughly accounts for the scatter observed in figure 4. If a local extremum
exists, we increment Nω̂i

, the total number of extrema for ωi following an intense

viscous event. In table 2 we show NV̂i
and P (ω̂i |V̂i), the probability of finding a

local extremum of ωi knowing that there was an intense viscous event (i.e. the ratio
Nω̂i

/NV̂i
), for different Reynolds numbers using a threshold for Vi equal to 〈ω2

1〉0.
The table (third row) shows that slightly more than 70 % of intense viscous events
are followed by the maxima in vorticity in the interval given by (4.3) for all Rλ. Thus,
70 % of the events can be forecast in time scales of the order τv . The results could not
be much better because our procedure for tracking sequential peaks in the viscous
and vorticity terms was successful only 75 % of the time. Note further that this result
comprises local extrema for ωi of both signs. On the other hand, the probability
with which a positive or negative sign of large Vi would lead to a large positive or
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negative sign of ωi is close to 50 % (fourth row of table 2) – an essentially random
connection.

It is possible to use additional information about the state of the system at tV̂i
to

successfully predict more often the occurrence of a vorticity event knowing that a
strong viscosity event has occurred. To do this, we distinguish different cases on the
basis of the signs of Vi , −Ci and ωi at t = tV̂i

. A state of the system will be denoted
by (+ + +) if sign(Vi(tV̂i

)) = 1, sign(−Ci(tV̂i
)) = 1 and sign(ωi(tV̂i

)) = 1 or (+ − −)
if sign(Vi(tV̂i

)) = 1, sign(−Ci(tV̂i
)) = −1 and sign(ωi(tV̂i

)) = −1. Now we look at the
probability of finding an extreme ω̂i given that there was an intense viscous event V̂i

and that the configuration is given by (+ + +). Other combinations can be defined
similarly. Note that (+ + +) and (− − −) are equivalent, as are (+ − +) and (− + −).
The equivalent states are collected together in table 2. We see that when Vi , −Ci and
ωi all have the same sign (i.e. (+ + +) or (− − −)), an intense viscous event always
results in a local extremum for ωi of the same sign, with the intensity that may be
related to the scaling shown in the inset of figure 4. If either −Ci(tV̂i

) or ωi(tV̂i
) has a

different sign, the probability is reduced as expected – to about 80 % at all Reynolds
numbers.

Thus, we find that the viscous term Vi is a reasonable precursor (with 70 % success)
for intense vorticity events on time scales of the order of τv . One can do better in
several ways. For example, if this information is supplemented by the sign of the
advective term and vorticity itself at the instant Vi peaks, the precursor becomes
more definitive (almost always successful for one set of conditions and about 80 %
successful for others). Although the conditional probabilities shown in Table 2 appear
to be independent of the Reynolds number, longer time series and a wider range of
Reynolds numbers are needed to strengthen this assertion.

5. Discussion and conclusions
We have shown that large viscous contributions anticipate the arrival of large

vorticity events. This statement can be understood as follows. Since advection
dominates, gradients in space and time are related by a velocity. Therefore, gradients
of vorticity gradients (i.e. viscous terms) may be treated as time derivatives of vorticity
gradients and therefore may ‘announce’ the arrival of the large vorticity gradients or,
for quasi-constant velocity, large advective terms. The structure of the fluid dynamic
equations makes viscous terms (under the dominance of advection) ‘look like’ the
second time derivative of vorticity and is capable of anticipating the arrival of large
vorticity. This anticipation cannot be expected to hold true for long periods.

All intermittent quantities of turbulence (such as dissipation) are governed by
equations with a structure similar to (3.1), with the ‘sources’ Wi and Vi replaced
suitably. Whenever the contributions from all these processes are small compared
with Ci for intense events, (3.3) applies qualitatively. Therefore, it is possible that
the scaling laws proposed here may hold qualitatively for all intermittent quantities.
The physical picture would be that they would all be advected by the flow on short
time scales, but different processes would be responsible for building up the large
fluctuations on longer time scales.

While our results do not depend significantly on averaging times and procedures,
there are at least two limitations to our proposal on precursors. First, ‘predictions’
are possible on relatively short time scales of the order of some 20 τv; the time scale
τv is of the order of the Kolmogorov time in box turbulence and will be multiplied
by a factor U/v if vorticity advection occurs by a mean velocity U instead of the
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fluctuation. It is unclear if forecasts over longer times would be possible in practice
(without a more elaborate apparatus). Second, it is not obvious that one can measure
the second derivative of the signal with adequate accuracy. It presents no problem in
a clean system such as computational turbulence, but in general, one has to apply
some filtering to the signal without losing its substance.

We note that the work presented here has been mainly from a Eulerian perspective.
Lagrangian studies following specific structures will be of great fundamental value.
These studies are, in fact, part of our continuing work.

Although we do not have the luxury of well-tested differential equations for many
extreme events occurring in nature, we believe that knowledge from turbulence could
prove valuable for them as well. It has already been observed in Donzis et al. (2008),
and theorized, among others, in L’vov & Procaccia (1996), Nelkin (1999) and He
et al. (1998), that universal behaviour may govern aspects of all extreme phenomena.
In seismology, for instance, there is some evidence for the existence of precursory
motion for earthquakes and aftershocks (see, for example, Melbourne & Webb 2002).
In particular, measured displacement shows departures from long-term trends which
will first be captured by changes in second time derivatives. It is conceivable that
this precursor is related to shear stresses (and therefore to dissipation). Even for
non-Newtonian fluids, dissipative contributions are determined by velocity gradients
through a (sometimes-complex) functional form. The corresponding term in the
momentum equation would then take the form of the gradient of this function. In
this case too, strong dissipative terms may serve as a precursor for intense events if
space and time can be related (as shown to be the case for vorticity events). Some of
the fluid dynamics involved in such problems has been discussed in e.g. Shimamoto
(1986) and Rice (2006). A more rigorous relation between fault dynamics and fluid
mechanics is part of our ongoing research.

It is a pleasure to dedicate this paper to Professor S. H. Davis who, through personal
research, leadership and mentoring, has immensely influenced the fluid dynamics
community of his times. We appreciate helpful collaboration with P. K. Yeung on
the simulations. This work was supported by the National Science Foundation grant
CTS-0553602 to the University of Maryland.

Appendix. Relation to multifractal predictions
Here, we explore the connection between the present model of large fluctuations

with other descriptions in the literature. Since (3.4) represents large fluctuations one
would expect that a model based on this functional form should be able to reproduce
high-order statistics from experimental and numerical data as well as the widely used
MF models (Yakhot & Sreenivasan 2005). One can use a collection of power-law
events of the form

ω̃2
1(t) ≈

{
[(t − t0−)/τ̃ ]β/τ̃ 2, t0− � t < tp,

[(t0+ − t)/τ̃ ]β/τ̃ 2, tp � t < t0+,
(A 1)

and zero otherwise, where tp is the time at which ω̃2
1 attains its maximum, a, t0± = tp±δt

and δt = τ̃ (τ̃ 2a)1/β so that ω̃2
1(tp) = a. In this case, upon integration over time, one

obtains moments that scale as

〈ω̃2n
1 〉 ∼ 2a1/β τ̃ 1+2/β an

1 + βn
. (A 2)
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Figure 5. Scaling of moments according to MF (Nelkin 1990) (�), the theory of Yakhot &
Sreenivasan (2005) (
) and (A 2) with effective parameters a∗ and τ̃ (∗). (a) The curves are
for Rλ =100, 500 and 1000. (b) Even moments from n= 6 to n= 14.

We have tested this scaling for signals with a number of spikes with different
amplitudes a and times scales τ̃ and found that (A 2) is quite accurate if one uses
‘effective’ parameters a∗ and τ̃ ∗ to fit the data. In figure 5(a), we show moments
of squared vorticity according to the MF formalism (Nelkin 1990), the theory in
Yakhot & Sreenivasan (2005) and (A 2) with parameters a∗ and τ̃ ∗ chosen as best fit
to the MF model for n � 5 at three Reynolds numbers. As with some other models
(Nelkin 1995; Schumacher, Sreenivasan & Yakhot 2007), it is virtually impossible
to distinguish our model from the others from such comparisons alone. The matter
is somewhat more obscure: by using ‘exponential’ spikes defined by aec(t−tp) if t � tp
and ae−c(t−tp) if t > tp , one obtains 〈ω̃2n

1 〉 ∼ an/(nc) which is the same scaling as
(A 2) for large n. Because the MF model, the power law (for any β) and the
exponential spikes all give the same scaling for high-order moments, the conclusion
is that little can be said about the local structure of intense events from such global
comparisons.

Nevertheless, it is of interest to explore the connection between the present and
the MF models. The fundamental assumption behind the latter is that the total
dissipation in a d-dimensional box of size r scales as Er =

∫
r
ε dr ∼ rα−1+d (a similar

quantity can be defined for enstrophy as Wr =
∫

r
ω2 dr ∼ rα′−1+d). In Meneveau &

Sreenivasan (1987) this scaling was tested for the dissipation surrogate (∂u/∂t)2 for ε

by plotting Er as a function of r . One of their figures is reproduced here in figure 6(b)
along with the approximate power law (dashed line) suggested by those authors. In
figure 6(a), we show the scaling of the integral (W̃1)t =

∫ t

0
ω̃2

1 dt where ω̃2
1 is composed

of six spikes of the form of (A 1) with different tp and amplitudes a. Comparison
of figures 6(a) and 6(b) reveals the same approximate power-law behaviour. It is
therefore not surprising that similar predictions are found for the scaling of moments.

Because one of the effective parameters, a∗, is a measure of the strongest fluctuations,
it is of interest to investigate its Reynolds number scaling. We found that the present
model reproduces the MF predictions if one uses simple power laws a∗ ∼ Rλ

γa ,
τ̃ ∗ ∼ Rλ

γτ and M ∼ Rλ
γM (where M is the number of spikes) with γa ≈ 1.60, γτ ≈ −0.84

and γM ≈ 1.75. Using this result, we can determine the Reynolds number scaling of
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Figure 6. (a) The integral (W̃1)t =
∫ t

0 ω̃2
1 dt ′ for a signal composed of six spikes of the form of

(A 1). The dashed line is a power law for comparison. (b) Experimental data from Meneveau
& Sreenivasan (1987, figure 1c in their paper). The dashed line is the power-law fit from that
reference. The two figures are in arbitrary units.

moments of different orders as

〈ω̃2n
1 〉 ∼ Rλ

nγa+ρ−log n/ log Rλ, (A 3)

where ρ = γa/β + γτ (1 + 2/β) − γM . This equation shows a logarithmic correction to
a simple power law at finite Reynolds numbers.

Another way to recast the MF model is to use local averages: εr/〈ε〉 ∼ (r/L)α−1 for
energy dissipation or ω2

r /〈ω2〉 ∼ (r/L)α
′−1 for squared vorticity. We are now interested

in the limit r → 0, so that r lies within an intense event. In the present model, we
could write ω2

r /〈ω2〉 ∼ (r/rτ )
2 (see (3.4)), where rτ is a suitably defined scale (e.g.

rτ ≈ v τ , this being a function of time and space). This result suggests a simpler object
if scales are normalized by rτ instead of L. In fact, we could write, at each location,
r2
τ ω

2
r ∼ 〈ω2〉r2 and compute moments to obtain 〈(r2

τ ω
2
r )

n〉 ∼ 〈ω2〉nr2n (for r → 0). This
result, which can also be applied to ε, can be deduced from applying dimensional
arguments to r2

τ εr – by assuming that the important parameters are 〈ε〉 and r –
resulting in non-anomalous scaling for the quantity 〈(r2

τ ω
2
r )

n〉.
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